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Abstract
Heat production and dissipation induced by current flow in nanostructures is of primary
importance to understand the stability of these systems. These effects have contributions from
both electron–phonon and electron–electron interactions. Here, we consider the effect of the
local electron and ionic heating on the conductance of nanoscale systems. Specifically we show
that the non-linear dependence of the conductance on the external bias may be used to infer
information about the local heating of both electrons and ions. We compare our results with
available experimental data on transport in D2 and H2 molecules. The comparison between
experiment and theory is reasonably good, close to the lowest phonon mode of the molecule,
especially for the D2 molecule. At higher biases we cannot rule out the presence of other effects
such as current-induced forces that make the scenario more complex.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The idea of building electronic devices from nanostructures
has gathered a lot of attention due to the high expectations in
terms of size reduction and power dissipation [1]. Encouraging
progress has been made in experimental techniques and
theoretical modeling towards this aim [2]. However, a
fundamental and technologically important issue, namely local
heat production and dissipation in these systems has attracted
much less attention [3–10].

It has been argued that since the electron inelastic
mean free path is large compared to the dimensions
of a nanostructure, no energy dissipation occurs in the
nanostructure region. However, nanoscale systems carry very
large current densities compared to bulk electrodes. This
implies an increased number of scattering events per unit time
and unit volume so that interactions among electrons or among
electrons and phonons are particularly important. In addition,
the reduced size means a small heat capacitance: any small
energy transfer from the current-carrying electrons to local
ionic vibrations or other electrons in the system may induce
a substantial heating of the nanostructure [7].

So far, direct measurements of the amount of energy
locally dissipated in a nanoscale system have been beyond our
reach. However, new experiments have considered the indirect
effects of local heating on accessible quantities [8, 9, 11, 12].

For example, in [8, 9] an effective ionic temperature is
determined via the force needed to break the chemical bonds
between molecules and the adjacent leads. These experiments
indirectly probe the local ionic temperature, the contributions
due to electron–electron interactions, and corresponding local
electron heating [7, 9].

Here, we discuss another possible indirect method to
probe both the local ionic and electron temperatures via the
non-linearities in the DC conductance of nanostructures. We
will compare our results with the experimental conductance of
simple molecules such as D2 and H2 sandwiched between two
Pt leads as studied in [13] (and references therein).

In order to address the above issues we need a theory that
takes into account both energy production and dissipation on an
equal footing. A full quantum mechanical description in terms
of many-body states for the present non-equilibrium problem
seems hopeless. Instead, we have previously shown that a
much more ‘economical’ hydrodynamic theory in terms of the
single-particle density and current density may be derived for
nanostructures [14]. In this paper, we first review such a theory,
and later on use it to study the effect of heating on conductance.

2. Classical hydrodynamics

In the following, we will refer to some concepts of classical
hydrodynamics. For completeness, we repeat here some of
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those concepts, while a more comprehensive description of the
dynamics of classical fluids can be found in many textbooks
[15, 16].

The dynamics of a classical viscous fluid is usually
described by the so-called Navier–Stokes equations for the
single-particle density, n(r, t), and the velocity field, v(r, t),
(ratio between the current density and the density)

Dt n(r, t) = −n(r, t)∇v(r, t)

mn(r, t)Dtvi (r, t) = −∇i P(r, t) + ∇ jπi, j (r, t)

− n(r, t)∇i Vext(r, t)

(1)

where P(r, t) is the pressure, πi, j (r, t) is the Navier–Stokes
stress tensor

πi, j (r, t) = η
[∇ jvi (r, t)+ ∇iv j (r, t)− 2

3δi, j∇v(r, t)
]

+ ζ δi, j∇v(r, t), (2)

and Vext(r, t) is the external potential. (Throughout the paper,
∇i corresponds to the derivative with respect to the i th spatial
component (i = {x, y, z}), and summation over repeated
indexes is understood.) In these equations, the operator Dt =
∂t + v(r, t)∇ is the so-called ‘convective’ derivative, while the
viscosity coefficients, η and ζ , are the shear and bulk viscosity
of the liquid, respectively. The viscosity coefficients have
their origin in the approximate nature of the Navier–Stokes
equations and in the particle–particle interaction [17]. The
first equation in (1) is the continuity equation and states the
mass conservation when sources or sinks are not present. The
second equation in (1) is the force equation: the left-hand side
is the acceleration of a small volume of liquid subject to the
internal forces (due to pressure, particle–particle interactions)
and external forces (Fext = −∇Vext). It is important to realize
the approximate nature of these equations: in classical physics
the very basic concept of particle density n has a meaning
only in a coarse-grained sense, i.e. with respect to volumes
of the liquid small compared to the other relevant scales of
the problem, but large enough to contain ‘enough’ particles so
that a continuum mechanics can be developed. In the opposite
condition, one has to revert to the solution of the Newton
equations of motion for each particle. Due to the continuous
spatial nature of wavefunctions, the above limitations do not
pertain to quantum mechanics, for which a hydrodynamic
description can be formulated exactly.

3. Hydrodynamical formulation of quantum
mechanics

Ever since the formulation of the Schrödinger equation of
motion for complex wavefunctions, there have been several
attempts to formulate quantum mechanics in terms of classical
quantities. The degree to which these attempts have been
successful is still undecided, since the use of words like
‘particle’, ‘trajectories’, and ‘directions of propagation’ is
widespread in the modern scientific literature. One such
attempt was made at the dawn of quantum mechanics, in
1926, by Madelung [18, 17] who showed that the Schrödinger
equation for a single particle is exactly equivalent to a set of
equations of motion for the particle density and ‘velocity’.

For this single-particle problem, the velocity is defined as the
variation of the phase of the wavefunction with position, and
thus seems a mere mathematical tool [17]. An equivalent, but
more transparent definition of this velocity field is

v(r, t) = j (r, t)

n(r, t)
, (3)

where j (r, t) is the current density. This definition is valid for
the points r for which n(r, t) �= 0. It is remarkable that the
equation of motion for this velocity is governed by the external
forces, plus a ‘quantum mechanical’ contribution, known as
the ‘Bohm stress tensor’, which does not have a classical
counterpart [17]. Indeed, if we start from the Schrödinger
equation for the wavefunction, � , of a particle in the presence
of the external potential Vext, (h̄ = e = 1 throughout this paper,
where e is the electron charge)

i∂t�(r, t) = − 1

2m
∇2�(r, t)+ Vext(r, t)�(r, t) (4)

we can rewrite �(r, t) in terms of two real functions of time
and position, R and S, as

�(r, t) = R(r, t)eiS(r,t). (5)

It is a simple exercise to show that, if one defines the density
n(r, t), and the velocity v(r, t),

n(r, t) = R2(r, t) = |�(r, t)|2, (6)

v(r, t) = ∇S(r, t)

m
, (7)

then the equations of motion

∂t n(r, t) = −∇ [n(r, t)v(r, t)] , (8)

m∂tv(r, t) = 1

2m
∇

(∇2 R(r, t)

R(r, t)

)
− mv(r, t)∇v(r, t)

− ∇Vext(r, t) (9)

hold. Equations (8) and (9) have a clear physical interpretation:
the quantum mechanical system is equivalent to a fluid whose
dynamics is governed by the Euler equation (9) subjected to
the force exerted by the external potential [15], and an internal
force whose origin is purely quantum mechanical1. Moreover,
the dynamics conserves the mass, i.e. the total probability, and
then the continuity equation (8) holds [19]. The solution of the
equations of motion (8) and (9) is equivalent to the solution
of the Schrödinger equation. It is interesting to point out that
the quantum mechanical force can be expressed in terms of the
Bohm stress tensor,

Pi, j ≡ − 1

4m
n(r, t)∇i ∇ j ln(n(r, t)) (10)

and
n(r, t)

2m
∇i

(∇2 R(r, t)

R(r, t)

)
= −∇ j Pi, j (r, t). (11)

1 The first term on the right-hand side of equation (9).
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If one introduces the convective derivative, the equations of
motion (8) and (9) assume the well known form of the Navier–
Stokes equations of motion

Dt n(r, t) = −n(r, t)∇v(r, t), (12)

mn(r, t)Dtvi (r, t) = −∇ j Pi, j (r, t)−n(r, t)∇i Vext(r, t). (13)

Equations (12) and (13) are formally identical to the Navier–
Stokes equations (1) for a classical fluid. However, unlike
the Navier–Stokes equations which describe an approximate
dynamics of the many-body classical fluid, equations (12)
and (13) are exactly equivalent to the Schrödinger equation:
no approximation has been made in their derivation.

While this approach to quantum mechanics may appear as
a simple attempt to recover a classical description of quantum
phenomena, over the years it has proven to be a very useful
tool to describe the dynamics of quantum systems in several
contexts ranging from condensed matter physics to nuclear
physics (see, e.g. [20], and references therein). More recently,
we have shown that a hydrodynamic description of the electron
flow in nanoscale systems leads to the prediction of novel
phenomena, such as the existence of a dynamical (viscous)
resistance [21], turbulence [14, 22–24], and local electron
heating and its effect on ionic heating [7, 9].

Here, we describe our hydrodynamical approach to
transport in nanostructures. As a first step, we need to
generalize the derivation of the equations of motion (12), (13)
to the case of a many-body interacting system. We follow
closely the formalism presented in [14, 25]. (See also [26]
for a general formulation of the dynamics of a many-particle
electron system.) We describe the dynamics of the system via
a field creation (annihilation) operator ψ†(r, t) (ψ(r, t)) which
evolves in time following the Heisenberg equation of motion

i∂tψ(r, t) = − 1

2m
∇2ψ(r, t) + Vext(r, t)ψ(r, t)

+
∫

dr ′ ψ†(r ′, t)w(|r − r ′|)ψ(r ′, t)ψ(r, t), (14)

where the potential w(|r − r ′|) describes the particle–particle
interaction. We define the single-particle density operator via
the usual definition, n̂(r, t) = ψ†(r, t)ψ(r, t) and the current
density operator

ĵ(r, t) = i

2m

[(∇ψ†(r, t)
)
ψ(r, t) − ψ†(r, t)∇ψ(r, t)

]
.

(15)
It is lengthy but straightforward to show that these two
operators follow the dynamics induced by the coupled
equations of motion

∂t n̂(r, t) = −∇ ĵ(r, t) (16)

m∂t ĵi(r, t) = −n̂(r, t)∇i Vext(r, t)− ∇ j T̂i, j (r, t)

− ψ†(r, t)
∫

dr ′ ψ†(r ′, t)∇iw(|r − r ′|)ψ(r ′, t)ψ(r, t)

(17)

where we have defined the kinetic stress tensor operator

T̂i, j (r, t) = 1

2m

[
∇iψ

†(r, t)∇ jψ(r, t) + ∇ jψ
†(r, t)∇iψ(r, t)

− δi, j

2
∇2n̂(r, t)

]
. (18)

From the equations of motion for the operators, we get
immediately the equations of motion for their expectation
values

∂t n(r, t) = −∇ j (r, t) (19)

m∂t ji(r, t) = −n(r, t)∇i Vext(r, t)− ∇ j 〈T̂i, j (r, t)〉
−

∫
dr ′ ρ2(r, r

′, t)∇iw(|r − r ′|) (20)

where ρ2(r, r ′, t) = 〈ψ†(r, t)ψ†(r ′, t)ψ(r ′, t)ψ(r, t)〉.
Another rather lengthy and involved calculation allows us
to write the force density due to the particle–particle
interaction as a second-rank tensor, provided the interactions
are negligibly small at the boundary of the integration volume
in equation (20). The result is [14, 25]

∇ j Wi, j = −1

2
∇ j

∫
dy

yi y j

|y|
dw(|y|)

d|y|
×

∫ 1

0
dλ ρ2(r + λy, r − (1 − λ)y, t)

≡
∫

dr ′ ρ2(r, r
′, t)∇iw(|r − r ′|), (21)

so that we arrive at the dynamical equation

m∂t j (r, t) = −n(r, t)∇i Vext(r, t)− ∇ j Pi, j (22)

where we have defined

Pi, j = Wi, j + 〈T̂i, j 〉. (23)

From here, by using the definition of the convective derivative
and re-scaling the particle momentum so that the stress tensor
reads

Pi, j = Wi, j + 〈T̂i, j 〉 − m n vi v j , (24)

one obtains the equations of motion for the particle and current
densities in a form identical to the single-particle equations of
motion (12), (13).

Like equations (12) and (13), which, for a given
initial condition, constitute a closed set, i.e. their solution
is equivalent to the solution of the single-particle time-
dependent Schrödinger equation, their many-body counterpart,
equations (19) and (22) are equivalent to the solution of
the many-body time-dependent Schrödinger equation. This
equivalence is a direct consequence of the theorems of time-
dependent density-functional theory [27, 28]. These theorems
state that, given an initial condition, there exists a one-to-
one correspondence between the time evolution of the particle
density n(r, t) and the scalar potential Vext(r, t) applied to
the quantum mechanical system. A similar correspondence
holds between the current density j (r, t) and an external vector
potential A(r, t) [27, 29–31], while the mapping does not
generally exist between the current density and the external
scalar potential [32]. The physical relevance of these theorems
to our case is that the stress tensor Pi, j (r, t) in (23) is
a functional of either the density or the current density,
i.e. Pi, j (r, t) = Pi, j [n(r, t ′), t] or Pi, j (r, t) = Pi, j [ j (r, t ′), t]
(with t ′ � t). This implies that once the exact many-body
stress tensor Pi, j is known, one can, in principle, recover from
the solution of equations (19) and (22) full information on the
many-body wavefunction.

3
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Needless to say, the exact stress tensor is unknown.
However, starting from equations (19) and (22) one can
develop perturbation schemes to approximate the exact stress
tensor [30, 33, 34], at least for the problem at hand,
thus simplifying enormously the solution of the many-body
problem. In the following, we will describe one such
approximation scheme for the present case of current flow in
a nanojunction. We will derive an equation of motion for the
stress tensor Pi, j and show that it depends on the so-called
three-particle stress tensor P(3)

i, j,k , which in turn describes the
way three particles interact. The derivation of an equation of
motion for P(3)

i, j,k would bring us into the maze of a hierarchic
set of equations for stress tensors that describe electron–
electron interactions to all orders. We will show, however, that
for the case at hand, we can truncate this hierarchy and obtain
a closed equation for the stress tensor Pi, j .

4. Visco-elasticity of the electron liquid

In parallel with the hydrodynamic description of quantum
mechanics, a visco-elastic formulation of the dynamics of
the electron liquid has been derived within linear-response
theory. It has been realized that a certain class of low-
energy, long-wavelength excitations of the electron liquid may
be mapped into the dynamics of a visco-elastic medium [35].
The dynamics of this visco-elastic medium is described by an
equation of motion for the current density given by (in linear
response and d dimensions, d > 1)

mn∂tv(r, t) =
[

K̃ +
(

1 − 2

d

)
μ̃

]
∇ (∇v(r, t))

+ η̃∇2v(r, t) − n(r, t)∇Vext(r, t) (25)

where K̃ and μ̃ are two complex constants which depend on
the electron density n. These complex constants are expressed
in terms of the more familiar viscosities, ζ (bulk viscosity) and
η (shear viscosity) and elastic constants K (bulk modulus) and
μ (shear modulus) via the relations

K̃ (ω) = K − iωζ, (26)

μ̃(ω) = μ− iωη, (27)

where ω is the frequency of the external perturbation used to
excite the electron liquid.

The next step is then to express the visco-elastic
coefficients of the liquid in terms of its microscopic properties,
i.e. relate these quantities to the response functions. Here we
only report the results that are relevant to the present work and
refer the reader to [35] for an explicit derivation. We are only
concerned with the DC (zero-frequency) limit of the above
quantities. By using an interpolation of the numerical results
of mode–mode coupling theory [36] one finds the following
density dependence of the zero-frequency shear viscosity (the
bulk viscosity is identically zero in the same limit) [35]

η

n
= 1

60r−3/2
s + 80r−1

s − 40r−2/3
s + 62r−1/3

s

(28)

Figure 1. Schematic of a nanojunction connected to two bulk
electrodes. A steady current is flowing from one electrode to the
other.

in 3D and in 2D by

(η
n

)−1 =
(

r 2
s

12π
ln

2

ers
+ 0.25r 2

s

)−1

+21r−2
s +23r−1/2

s +13,

(29)
where rs is the electron constant for the electron liquid with
uniform density n:

rsaB =
{
(3/4πn)1/3 3D

(1/πn)1/2 2D,
(30)

with aB the Bohr radius.
It is interesting to point out that specific confining

potentials (e.g. an electron liquid in a quantum well) may make
the approximations used to derive equations (28) and (29)
ill-founded, leading to a peculiar behavior of the viscosity
coefficients [37].

5. Hydrodynamic approach to transport in nanoscale
systems

In this section we show that in the case of nanoscale systems
the stress tensor can be approximated to a form similar
to the classical Navier–Stokes one. This is due to the
geometric constriction experienced by electrons flowing in the
nanostructure which gives rise to a very short ‘collisional’
time [38, 39]. The system we have in mind is some nanoscopic
junction sandwiched between two mesoscopic or macroscopic
leads (see figure 1) and current is induced in the system by,
for example, polarizing the leads with a finite bias. In this
regime, we show that one can truncate the infinite hierarchy
of equations of motion for the electron stress tensor given
in (23) to second order and thus derive quantum hydrodynamic
equations. To realize how the simple presence of the junction
has such a strong impact on the equation of motion of the
current, one has to keep in mind that the former acts as a single
impurity potential that cannot be avoided by the electron flow.
This is different from the corresponding effect in bulk materials
for which a certain density of impurities is necessary to have a
finite resistance.

Let us then employ the quantum Boltzmann equation
for the single-particle distribution function f (r, p, t) (which
can be derived from the time-dependent Schrödinger equation
with standard techniques [40]) and show how the short

4
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collisional time induced by the nanostructure allows us to
close the equations for the stress tensor2. The quantum
Boltzmann equation for the distribution function in a co-
moving (Lagrangian) reference frame moving with velocity
v(r, t) is [14, 41]

I [ f ] = Dt f (r, p, t)+ p

m
∇ f (r, p, t)+ e∇ϕ ∂ f (r, p, t)

∂p

− p∇v ∂ f (r, p, t)

∂p
− m Dtv

∂ f (r, p, t)

∂p
(31)

where I is the usual collision integral [40], ϕ is the sum of
the external potential and the Hartree part of the interaction
potential. The collision integral contains two terms, one elastic
and the other inelastic. In what follows, it is important to
realize that both terms can drive the system toward a local
equilibrium configuration.

From the quantum Boltzmann equation, we can derive
the equation of motion for the moments of the distribution
function. The general expression for the nth moment is the
nth-rank tensor

Pi1,...,in = 1

mn−1

∫
dp pi1 . . . pin f (p, r, t). (32)

The zeroth order is the single-particle density, the first moment
is the velocity field, and the second moment is the stress tensor
we want to approximate. The equation of motion for the stress
tensor contains a term proportional to the third moment P(3):

Dt Pi, j + Pi, j∇v + Pi,k∇kv j + Pk, j ∇kvi + ∇k P(3)
i, j,k

= 1

m

∫
dp I [ f ]pi p j . (33)

We note that P(3) enters in (33) only through its spatial
derivative. If the latter is small then the hierarchy can
be truncated [14, 41]. From (33) we easily see that this
derivative is small compared to the other terms whenever
γ = u/(L max(ω, νc)) � 1. Here u is the average electron
velocity, L is the length of inhomogeneities of the liquid that
give rise to scattering among three particles, ω the system
proper frequency and νc the collision rate. The parameter
1/L enters through the spatial derivative of P(3), ω from the
frequency dependence of the interactions (in the DC limit
of interest here ω → 0), νc through the collisional integral
I [ f ] ∝ −νc( f − f0), where f0 is the equilibrium Fermi
distribution. This derivative is indeed small for transport in
nanostructures: when electrons move into a nanojunction they
adapt to the given junction geometry at a fast rate, and approach
to local equilibrium occurs at this fast rate even in the absence
of electron interactions [38, 39]. This ‘relaxation’ mechanism
occurs roughly at a rate νc = (�t)−1 ∼ (h̄/�E)−1, where�E
is the typical energy spacing of lateral modes in the junction.
For a nanojunction of width � we have �E ∼ π2h̄2/m�2

and �t ∼ m�2/π2h̄. If � = 1 nm, νc is of the order of
1015 Hz, i.e. orders of magnitude faster than typical electron–
electron or electron–phonon scattering rates. The condition
γ = u/(L max(ω, νc)) � 1 thus requires the length of

2 Clearly, for the definition of local equilibrium distribution to be valid, any
length scale entering the problem has to be larger than the system Fermi
wavelength.

inhomogeneities L � 1 nm, which is easily satisfied in
nanostructures. Note instead that in mesoscopic structures this
condition is not necessarily valid. In that case, the dominant
relaxation rate νc is given by inelastic effects, i.e. it is of the
order of THz, so that for typical lengths of mesoscopic systems,
γ ≈ 1 in the DC limit. Nonetheless, the above condition could
still be valid for high-frequency excitations, like plasmons,
and/or very low densities, so that moments of the distribution
of order higher than two are negligible.

By neglecting ∇k P(3)
i, j,k in (33) we can thus derive a form

for Pi, j . Let us write quite generally the stress tensor Pi, j as
Pi, j = δi, j P − πi, j , where the diagonal part gives the pressure
of the liquid, and πi, j is a traceless tensor that describes the
shear effect on the liquid. From (33) we thus find that the tensor
πi, j can be written as (in d dimensions, d > 1)

πi, j = η

(
∇iv j + ∇ jvi − 2

d
δi, j∇kvk

)
(34)

where η is a real coefficient (the viscosity) that is a functional
of the density [41]. We point out that (34) is in fact a particular
case of a general stress tensor with memory effects taken into
account [35, 30, 42]. In our derivation this is the first non-
trivial term of an expansion of the stress tensor in terms of
the density and velocity field. Consequently the Navier–Stokes
stress tensor in (34) can be seen as the first-order (non-trivial)
contribution to the exact stress tensor of the electron liquid (see
also [25, 42, 30]).

Using this stress tensor we finally get from (22) the
generalized Navier–Stokes equations for the electron liquid in
nanoscale systems

Dt n(r, t) = −n(r, t)∇v(r, t),

mn(r, t)Dtvi (r, t) = −∇i P(r, t) + ∇ jπi, j (r, t)

− n(r, t)∇i Vext(r, t).

(35)

Equations (35) are formally equivalent to their classical
counterpart [15] (see equation (1)) and thus describe also non-
linear solutions, i.e. the possibility to develop turbulence in the
electron liquid in its normal state. In the following, we will
consider only the case in which the liquid is in the laminar
regime and incompressible so that the visco-elastic coefficients
are spatially uniform. This latter approximation is practically
satisfied in metallic quantum point contacts (QPCs) but needs
to be relaxed in the case of QPCs with organic/metallic
interfaces (see, e.g. [21]). In addition, for this case the Hartree
potential is constant and its spatial derivative is thus zero.
Therefore, (35) reduce to the Navier–Stokes equations for the
density and velocity of a viscous but incompressible electron
liquid

Dt n(r, t) = 0,

∇v(r, t) = 0,

mn(r, t)Dtvi (r, t) = −∇i P(r, t) + η∇2vi (r, t)

− n(r, t)∇i Vext(r, t).

(36)

5
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6. Heat equations from hydrodynamics

The above results allow us to treat heat generation and
transport using a simplified hydrodynamic approach. In fact
we know that the flow of a viscous fluid, as described by
our formalism, generates internal friction and consequently an
effective temperature distribution inside the system. Therefore,
when a steady state has been reached, we can supplement
the Navier–Stokes equations with an equation for the energy
balance. In the process of heat production, we need to identify
a heat source, a mechanism for the dissipation of this heat
and, since the system is in a steady state, equate these two
terms with the local entropy production. In a recent paper [7]
we have developed this model obtaining the equation for the
energy balance

πi, j (r)∂ jvi (r)+ ∇[k(r)∇Te(r)] = cV (Te)v(r)∇Te(r), (37)

where Te is the electronic temperature, k(r) is the diffusion
constant and cV is the specific heat at fixed volume of the
electron gas3. Equation (37) can be either justified on physical
grounds, or derived formally as a high-order expansion of the
many-particle stress tensor [25]. We also stress once more that
in deriving this equation we have assumed that the flow of the
electron liquid is laminar, i.e. we are far from the onset of a
turbulent regime [15, 14]. Obviously, in writing equation (37)
we have assumed that some thermodynamic quantities like
temperature and entropy for an electron liquid flowing in a
nanostructure can be defined. This is a much debated point, and
obviously we do not have a general solution for it. However,
here we argue that the electron temperature may be defined
as the one ideally measured by a probe weakly coupled to the
system and in local equilibrium with the latter [2]. While this
operational definition may not be simple to realize in practice,
we know from experiments that local heat generation due to
current has a large effect on the stability of nanostructures [9].

From the form of equation (37) we can deduce a general
relation between the applied bias and the electron temperature.
To do this, we realize [7] that the electron fluid velocity,
v, (which is generally smaller than the Fermi velocity [22])
responsible for the transport of current and heat is, in
linear response, proportional to the bias V .4 This simple
proportionality, and the usual result that k ∝ cV , bring us to
the general result

Te = γeeV , (38)

where γee is a constant whose expression in terms of
microscopic parameters of the electron liquid has been recently
derived for a quasi-adiabatic connection between the leads and
the nanojunction [7]

γee = 1.16 ×
(

G

n Ac

) √
d − 1

3d

η

γ
(39)

3 For an electron gas at low temperature, cV = cP since the correction is
second order in temperature.
4 V may be given by an external battery, or the potential due to a charge
imbalance.

where G is the conductance of the system in the limit of zero
bias, Ac its cross section, d is the dimensionality (d > 1).
Moreover,

γ = k2
Fk2

Bλe/9 (40)

in 3D, and γ = πkFk2
Bλe/6 in 2D [7], kF is the Fermi

momentum, kB the Boltzmann constant, and λe is the inelastic
mean free path.

Interestingly, equation (38) can be obtained from
general thermodynamic arguments, by comparing the energy
dissipated in the transport process in the nanostructure
(proportional to V 2 from Ohm’s law), and the energy
carried away by electrons (proportional to T 2

e for small
temperatures) [7].

7. Local electron heating

In the case of a finite background temperature and in the
absence of ionic heating, from our hydrodynamic theory, the
local temperature of the electrons in the nanostructure is given
by [7]

Te(V ) =
√

T 2
0 + γ 2

eeV 2 (41)

where V is the external bias and T0 is the electron temperature
deep into the electrodes. If we now let the ions heat up, their
effective local temperature is given by [7] (for values of the
parameters such that the argument in the root is non-negative)

T =
(

T 4
0 + γ 4

epV 2 − γ 4
eeV 4

)1/4
(42)

where γep can be expressed in terms of the physical parameters
of the nanostructure [3, 43], and we have assumed that both the
ions and the electrons are at the same background temperature
T0 deep into the electrodes. At zero background temperature
and for negligible electron–electron interactions, from the
above equation we obtain the known result for the local ionic
temperature [3, 43, 7]

T � γep

√
V . (43)

Effect on conductance. We can now calculate the effect of
local electron heating on the conductance of a nanostructure.
We focus on the quasi-ballistic regime and we generalize
equation (13) of [43] for the inelastic current in the presence
of a finite electron temperature5. We also consider one mode
frequency ω. We will generalize later to more modes. To
take into account the effect of an effective local electron
temperature on the inelastic current, one faces the calculation
of terms with factors of the type

∫ ∞
−∞ dE f αE (1 − f βE±ω), with

α, β = {R,L} corresponding to electrons moving from either
left or right, and f αE = (exp((E−μα)/kBT )+1)−1 is the Fermi
distribution with the difference between the electrochemical
potentials equal to the bias, μL − μR = V . (Refer to [43]
for additional details on the notation.)

We could provide a numerical calculation of the inelastic
current. However, we are interested in an analytical expression
and thus proceed as follows. We evaluate the above integrals

5 Note that a factor 2 is missing in equations (7) and (8) of [43].
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in the Sommerfeld approximation and keep only the terms of
zeroth order in the electron temperature (this is reasonable
because the local electron temperature is generally a small
quantity). This approximation brings us to the expression for
the current flowing in the system

I � GelV − Gel
kB

ω
γI

(
T 4

0 + γ 4
epV 2 − γ 4

eeV 4
)1/4

× log(eβ(V−ω) + 1)

β
, (44)

where γI is the amplitude of the conductance drop at V =
Vc ≡ ω for zero electron and phonon temperature, Gel is
the elastic conductance at zero bias, and β(V ) = 1/kBTe(V )
where kB is the Boltzmann constant. By differentiating
equation (44) with respect to bias, and again keeping only the
terms of zeroth order with respect to the electron temperature,
we arrive at

G

Gel
� 1− kB

ω
γI

(
T 4

0 + γ 4
epV 2 − γ 4

eeV 4
)1/4

[
1

eβ(V )(ω−V ) + 1

]
.

(45)
To obtain this result, one also has to bear in mind that the
approximations we make pertain to the energy region V � ω,
thus d[β(V )(V − ω)]/dV � β(V ). An expression for the
conductance similar to equation (45) can be derived for the
case of zero electron temperature [43], i.e. β → ∞. Notice,
however, that for consistency, one has to take this limit in the
expression for the current (44) before taking the derivative with
respect to the bias.

An example of the effect of local ionic and electron
heating on conductance is given in figure 2 (see also discussion
below). In the absence of both effects (and at zero nominal
background temperature) the conductance shows a simple step-
like drop at the bias corresponding to the energy of the phonon
mode. The ionic heating introduces a shoulder at biases larger
than the mode energy, while the electron heating broadens the
conductance curve with an effective temperature larger than the
nominal background temperature.
Comparison with experiments. To compare our results
with available experimental data we consider a D2 molecule
sandwiched between two Pt leads [13]. We focus on the
predictions of our hydrodynamic theory on the local electron
heating effect. Therefore, we do not attempt to do a full first-
principles calculation of ionic heating, and take the relevant
parameters from experiment. For the D2 molecule we consider
a cross section of π × 1 Å

2
, i.e. a circle with radius �1 Å.

The nominal electron temperature deep inside the electrodes is
taken to be T0 = 5 K. From the experimental results we have
the frequency of the phonon mode Vc = 0.05 eV, the drop of
the conductance

γI =
d(I−I0)

dV
dI0
dV

∣
∣
∣
∣
Vc

= 0.02, (46)

and the conductance at zero bias, Gel = 0.984 G0. We use
as fit parameters γep and evaluate γee from equation (39). In
obtaining γee we have assumed an inelastic mean free path
λe of 1 μm, a value in line with the expectations for this
system [44]. We have also assumed that the electron density

Figure 2. Plot of G/G0 as given by equation (45) where
G0 = 2e2/h. The solid (red) curve has been generated with the
following parameters: γee = 180 K V−1, γep = 600 K/

√
V, Gel =

0.98 × G0, T0 = 5 K , γI = 0.02, h̄ω = 0.05 eV. The dashed
(green) line corresponds to the case of zero phonon and electron
temperature (γee = γep = 0). The dashed-point (black) curve
corresponds to the case when only the phonon heating is taken into
account (γee = 0). In the figure we also define the parameter� (see
text).

that enters the local heating is the one of the chemical bonds
between the D and Pt atoms. This density is estimated to
be close to the Pt bulk density, n = 6.6 × 1028 m−3 which
gives the electron constant rs � 3. From these values, the
electron viscosity η and the constant γee are easily obtained
from equations (28) and (40), respectively: the electronic
heating constant is predicted from equation (39) to be γee =
180 K V−1. This implies an effective electron temperature
of about 10 K at the D2 junction at a bias of 50 mV. This
temperature is higher than the nominal bulk temperature.

The ionic heating constant is found to be γep =
405 K/

√
V .6 This value can be compared with the

corresponding γep for an Au point contact at small biases which
is about γ Au

ep = 170 K/
√

V [43]. This means that the Pt–
D2–Pt system heats up more than the Au QPC. For instance,
at 0.1 V the ions of the Pt–D2–Pt junction have an average
temperature of about 130 K while at the same bias the gold
atoms heat up locally to about 54 K. This larger temperature
is reasonable since, while the conductance is similar for an
Au point contact and Pt–D2–Pt, the D2 molecule is lighter
than Au with a consequent increase of the electron–phonon
coupling. In addition, the modes of the D2 molecule have lower
probability to elastically scatter into the bulk modes of Pt—
thus reducing lattice heat dissipation into the bulk electrodes—
than the modes of a single Au atom into the bulk modes of Au.
Both effects lead to a higher local ionic temperature. We thus
expect the Pt–D2–Pt junction to be more unstable under the
same bias conditions than an Au point contact, i.e. we expect
that the chain Pt–D2–Pt breaks, on average, at much smaller
biases than Au point contacts due to heating effects.

The theoretical conductance containing both the local
electron and ionic heating effects is reported in figure 3,
together with the experimental data. The qualitative agreement

6 This confirms that the ions heat more than the electrons at the same bias and
our approximation that leads to equation (42) is justified.
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Figure 3. Comparison between the experimental data [13] and our
theory (solid line, (red)) [14].

between theory and experiment is very good. It is interesting to
note that the tail of the experimental data goes approximately
as V 0.8, while the theory predicts 1−G/G0 � V 1/2 [3, 5]. It is
important to realize, however, that at large biases, other effects
such as current-induced forces and other structural instabilities
may also contribute to the actual value of the conductance [45].

We have also performed a second fit, not shown here,
using γee and γep as free parameters. The values for these
parameters obtained from this second fit are close to those
obtained from the theory and the one-parameter fit by less than
10% (we find the best fit for γee = 200 K V−1).
Inelastic conductance width. Let us now discuss how the
width of the inelastic conductance around the vibrational mode
increases with bias (see figure 2). This quantity can be
directly measured and provides additional information on local
electron heating. If the background temperature is zero, the
local electron temperature increases linearly with bias as in
equation (41). Let us define the quantity � as shown in
figure 2: it is the energy distance between the middle drop
of the conductance and the value at which the conductance
assumes its purely elastic value within a ratio α = [Gel −
G(Vc)]/Gel as indicated in figure 2. This quantity is plotted
in figure 4 for different values of the vibrational mode energy
and for a few values of α, assuming that the vibrational energy
is the only quantity allowed to vary. We conclude that the
width� increases linearly with the vibrational energy to reflect
the linear bias dependence of the local electronic temperature.
A systematic experimental study of this quantity would thus
provide more information on the electron heating phenomenon.

8. Discussion

Our analysis in conjunction with the experimental data
suggests that electrons heat up locally at the Pt–D2–Pt junction.
Our equation (41) also predicts that electrons cool down
when lowering the bias. On the other hand, a constant
electron temperature—above the background temperature—
for all biases is difficult to understand on physical grounds,

Figure 4. � as a function of vibrational mode energy as defined in
the text. We have tested the linear behavior for different values of the
percentage α at which we calculate �. The lines that connect the
symbols are linear regressions.

unless one assumes the existence of an external source of
energy that keeps the electron hot even at zero bias.

Experimental data showing an electron temperature equal
to the background temperature, i.e. negligible electron heating,
may be consistent with the fact that the effective cross section
‘seen’ by the electron liquid is the one of a Pt atom and
not of a D2 molecule7. If that were the case, the effective
cross section would be seven times larger than that of the D2

molecule, and since the electron temperature scales inversely
proportional to the cross section (see equation (39) and [14])
the electron heating temperature would be lower than the
background temperature. The conductance on the other hand
is unlikely to be so sensitive to this cross section due to the
extended nature of the Pt d-orbitals.

Further generalization of equation (45) to the case where
many vibrational modes are present is possible. For example,
it has been reported that a H2 molecule sandwiched between
two Pt leads shows two fundamental vibrational frequencies at
48 and 62 meV [13]. If one assumes that scattering by these
two modes is uncorrelated, a straightforward generalization of
equation (45) leads to

GH2

Gel
� 1 − kB

ω1
γI1

(
T 4

0 + γ 4
ep,1V 2 − γ 4

eeV 4
)1/4

×
[

1

eβ(V )(ω1−V )+1

]
− kB

ω2
γI2

(
T 4

0 +γ 4
ep,2V 2−γ 4

eeV 4
)1/4

×
[

1

eβ(V )(ω2−V ) + 1

]
, (47)

where ω1 and ω2 are the two vibrational frequencies and we
have taken into account the possibility that the two coupling
constants γep,1 and γep,2, and the two amplitudes of the
conductance drops γI1 and γI2 are different. A plot of GH2

is reported in figure 5 as a function of the external bias along
with the experimental data. Since the cross section for D2 and
H2 is essentially the same, and the electron heating does not
depend on the mass of the ions, our estimate of γee holds for

7 This system can be thought of as a junction Pt–Pt–Pt with just one or a few
platinum atoms forming an effective QPC which is not significantly affected
by the presence of the deuterium molecule.
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Figure 5. (a) Experimental results of the non-linear DC conductance
of a H2 molecule between two electrodes. The two steps coming
from the two phonon modes at 48 and 62 meV are clearly visible,
together with some unexpected structure at low bias. (b) Plot of GH2

as a function of the external bias according to equation (47). In this
plot, which is not a fit to the experimental data, we have used
γI 1 = 0.01, γI 2 = 0.002, γee = 180 K V−1,
γep,1 = γep,2 = 400 K/

√
V . The other parameters are the same as in

figure 3.

H2 as well. Our results are again in qualitative agreement with
the available experimental data [13], although our theory might
not be sufficient to quantitatively describe all the experimental
findings. Indeed, our fit in this case has failed in producing
any sensible result for the constants γee, γep,1 and γep,2: the
large fluctuations of the experimental data, especially in the
region of small bias and close to the phonon modes energies
do not allow for a systematic fit of the data with the theory.
Finally, it is interesting to note that a value of γep similar to
the one we have obtained for the D2 molecule gives reasonably
good agreement between theory and experiment also for the
H2 molecule. This seems to suggest that the longitudinal
modes of the bonds between the H and Pt atoms are mainly
responsible for the local ionic heating of the Pt–H2–Pt junction,
and similarly the longitudinal modes of the bonds between the
D and Pt for the Pt–D2–Pt junction. We expect that such modes
are slightly affected by the change of mass of the smaller atom
in the bond. Clearly, more theoretical and experimental work
in this direction is necessary.

9. Conclusions

We have discussed a novel hydrodynamic approach to transport
that allows the description of charge and heat flow in terms
of the single-particle density and velocity field of the electron
liquid [14]. The theory allows us to make predictions about
the electron flow past a nanostructure and its dependence on
the external bias (or the current). One such prediction is the
heating of electrons locally at the nanojunction [7]. Here we
have considered the measurable consequences of this effect
on the inelastic conductance which shows a broadening at the
inelastic step larger than the one expected from the background
nominal temperature. We have compared our theory with
available experimental results [13] and found a reasonable

quantitative agreement for the case of a D2 molecule between
two Pt leads. For the case of a H2 molecule between the
same leads our theory is only in qualitative agreement with the
experimental findings. We also predict that the width of the
inelastic conductance step should increase linearly with bias, a
fact that can be tested experimentally.
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[44] Pothier H, Guéron S, Birge N O, Esteve D and

Devoret M H 1997 Phys. Rev. Lett. 79 3490
[45] Yang Z, Chshiev M, Zwolak M, Chen Y C and

Di Ventra M 2005 Phys. Rev. B 71 041402

10

http://dx.doi.org/10.1103/PhysRevLett.98.226403
http://dx.doi.org/10.1103/PhysRevB.71.245103
http://dx.doi.org/10.1103/PhysRevLett.77.2037
http://dx.doi.org/10.1103/PhysRevLett.79.4878
http://dx.doi.org/10.1103/PhysRevB.60.7966
http://dx.doi.org/10.1103/PhysRevB.58.12758
http://dx.doi.org/10.1103/PhysRevB.76.035320
http://dx.doi.org/10.1088/0953-8984/16/45/024
http://dx.doi.org/10.1021/nl0520157
http://dx.doi.org/10.1103/PhysRevB.60.15550
http://dx.doi.org/10.1103/PhysRevB.71.165105
http://dx.doi.org/10.1103/PhysRevLett.95.166802
http://dx.doi.org/10.1103/PhysRevLett.79.3490
http://dx.doi.org/10.1103/PhysRevB.71.041402

	1. Introduction
	2. Classical hydrodynamics
	3. Hydrodynamical formulation of quantum mechanics
	4. Visco-elasticity of the electron liquid
	5. Hydrodynamic approach to transport in nanoscale systems
	6. Heat equations from hydrodynamics
	7. Local electron heating
	8. Discussion
	9. Conclusions
	Acknowledgments
	References

